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A health-monitoring and life-estimation strategy for composite rotor blades is developed in this work. The cross-

sectional stiffness reduction obtained by physics-based models is expressed as a function of the life of the structure

using a recent phenomenological damage model. This stiffness reduction is further used to study the behavior of

measurable system parameters such as blade deflections, loads, and strains of a composite rotor blade in static

analysis and forward flight. The simulatedmeasurements are obtained using an aeroelastic analysis of the composite

rotor blade based on the finite element in space and timewith physics-based damagemodes that are then linked to the

life consumption of the blade. The model-based measurements are contaminated with noise to simulate real data.

Genetic fuzzy systems are developed for global online prediction of physical damage and life consumption

using displacement- and force-based measurement deviations between damaged and undamaged conditions.

Furthermore, local online prediction of physical damage and life consumption is done using strains measured along

the blade length. It is observed that the life consumption in the matrix-cracking zone is about 12–15% and life

consumption in debonding/delamination zone is about 45–55%of the total life of the blade. It is also observed that the

success rate of the genetic fuzzy systems depends upon the number of measurements, type of measurements and

training, and the testing noise level. The genetic fuzzy systems work quite well with noisy data and are recommended

for online structural health monitoring of composite helicopter rotor blades.

Introduction

A N INTEREST in developing health- and usage-monitoring
systems (HUMS) for helicopter rotors has grown markedly in

recent years [1], due to the high levels of unsteady airloads
experienced by the main rotor [2–4] that can lead to structural-
damage accumulation. However, most of the existing rotor HUMS
rely on rotor track-and-balance (RTB) techniques for detecting rotor
blade mistracking and do not isolate the type of damage [5–8]. Most
research on rotor health monitoring has addressed isotropic blades
[9–12]. However, the damage mechanics of a composite rotor are
quite different [13–16]. Furthermore, the rotor operates in a noisy
environment, which complicates the development of damage-
detection algorithms. Therefore, the current need of rotor HUMS is
the development of an advanced structural-health-monitoring
(SHM) system for the composite rotor blades.

In general, SHM systems are developed based on the study of the
effect of different measurable properties of the rotor system that are
due to the various modes of damages in the rotor blade.Modern rotor
blades are typically made of composite materials. However, very
limited work has been done on the modeling of damage in the
composite rotor system. Several researchers have investigated
the modeling of a damaged helicopter rotor, assuming isotropic
structural properties [9,11,17]. Someworks considered crackmodels
based on a fracture mechanics approach [18], but these have also
been limited to isotropic materials. A first step addressing damage
modeling in composite rotor blades was taken by Lakshmanan and
Pines [19], who modeled damage in the form of a transverse crack,
which extends across the entirewidth of theflexbeamof a bearingless
rotor. However, there is a need for detailed modeling of the damage

modes in a composite rotor blade. A beginning in this direction was
made by Pawar and Ganguli [13], who modeled matrix cracking in
the helicopter rotor blade with cross-ply laminates and studied its
behavior in forward flight. Pawar and Ganguli [14] further modeled
the matrix cracking in generalized lay-up, box, and airfoil-section
beams and studied their static behavior. They also studied [15]
the effect of more severe damage modes, such as debonding/
delamination and fiber breakage due to matrix cracking, for a static
condition [15] and for forward flight [16].

In general, the first failure mode in the composite materials is
dominated by matrix cracking. Matrix cracking initiates more severe
damage modes such as debonding/delamination and fiber breakage.
Therefore, the effects of matrix cracking must be studied carefully.
When the matrix-cracking effect starts saturating, a local delami-
nation can initiate from thematrix-crack tips. Even though the effects
of delamination are not very severe, it may lead to the dangerous and
final damage mechanism of fiber breakage. As a result of matrix-
cracking and debonding/delamination damage modes in composite
materials, thematrix part of compositematerials becomesweak and a
proper transfer of the shear loads at the broken fibers may not take
place. A detailed literature survey of all of these key damage modes
in composite materials is covered in the author’s previous papers
[15,16].

Most of the SHM systems for rotor blades are developed to predict
physics-based damages. Though such works are useful in providing
physical insight, what is needed for prognostics is an estimate of life
consumption of the blade. Fatigue-damage growth is an important
aspect of the evolution of damage in the helicopter rotor blades. To
develop the SHM system for predicting the life of composite rotor
blades, an analysis of the measurable system behavior of the
composite rotor blade due to life consumption of the structure is
needed. This allows the use of the system measurements as virtual
sensors for the blade life. Generally, the decay in structural properties
of composite materials is modeled using phenomenological models
for fatigue analysis of the structure [20]. Although the fatigue of
homogenous materials is well understood, the analysis of fatigue in
composites is difficult, because the material properties of the
constituents of composites are quite different and there are multiple
failure modes.

Experiments have shown that the variation in the modulus of
elasticity due to damage growth in composite materials shows three
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different stages [21]. Stage 1 undergoes a rapid stiffness reduction
that is mostly due to the development of transverse matrix cracks.
Stage 2 damage growth is dominated by delamination and occurs in
an almost linear fashion with respect to cycles and accounts for the
high fatigue life of composites. Stage 3 shows rapid stiffness
degradation purely due to local damage progression and the initial
fiber fractures leading to strand failures. Early damage models
included a linear damage accumulation model by Nicholas and Russ
[22]. Other nonlinear damage accumulation functions have also been
used by Subramanian et al. [23] andHalverson et al. [24]. These early
models could not effectively capture all three damage stages. For
example, the model proposed by Subramanian et al. explains the fast
damage growth during the early loading cycles in stage 1, but does
not properly describe the rapid damage growth in stage 3. Halverson
et al. models stage 3 quite well, but not stage 1. Mao andMahadevan
[25] recently proposed a nonlinear model to capture the unique
characteristics of damage evolution in compositematerials subject to
fatigue loading. Parameters of the proposedmodel are obtained using
experimental data.With the obtained parameters, the fatigue damage
can be evaluated at any time. The numerical examples show that the
proposed damage function can model the experimental results very
well. Fatigue-damage indices during the service time can be obtained
from the proposed model more accurately. It should be noted that
such phenomenological models are mathematical curve fits for the
general curve type shown in Fig. 1.

Stiffness degradation can bemeasured directly on a test specimen.
However, in realistic structures, it is easier to measure or track
another variable that is tied to the stiffness.Moon et al. [26] proposed
the use of natural frequencies of composite laminates as a global
damage variable. The fatigue-damage state of the structure can then
be measured using the so-called residual natural frequency, which
could be measured from vibration tests. Badewi and Kung [27] also
correlated fatigue of composite materials with changes in modal
properties of select graphite epoxy composite specimens. They
mention that modal properties can be used as a real-time indicator of
damage in structures. Therefore, the life of the composite rotor blade
can be linked with the change in system behavior of the composite
rotor blade. An SHM system to predict blade life can then be
developed by monitoring rotor system behavior.

In general, there are two ways to handle uncertainty in fault-
detection problems. The first way is to prefilter the signals to remove
the noise and outliers [28,29]. The second way is to develop robust
algorithms for detecting damage in the presence of noise using
estimation or soft-computing techniques. SHM systems for the
composite materials are typically developed by solving an inverse
problem using the changes in some measurable properties of the
structure to detect damage. The inverse problem becomes
complicated because of the incomplete information and uncertainty
in the modeling, measurements, and signal processing. Therefore,
the inverse problem for the development of an SHM system are
solved using soft-computing methods such as neural network
[30,31], genetic algorithm [32–34], and fuzzy logic [35–37], or by
parameter estimation methods such as Kalman filtering [38]. These
soft-computing methods allow the extraction of useful conclusions

from slightly imprecise data. Recently, advanced soft-computing
methods have been developed by hybridizing the best features of two
or more soft-computing methods, and these hybridized systems are
more accurate than the original ones. The genetic fuzzy system
(GFS) is one of the advanced soft-computing methods developed by
combining the approximate reasoning capabilities of the fuzzy
systems with the learning capabilities of the genetic algorithms. The
first GFS for structural-damage detection was developed by Pawar
and Ganguli [39]. A genetic algorithm was used for automating the
process of rule generation for a fuzzy system for application to
damage detection in beam-type structures and a helicopter rotor
blade. The GFS was further demonstrated for health monitoring of a
thin-walled composite beam, which is conceptually similar to the
composite rotor blade structure [40]. However, these studies were
limited to frequencies only. In the present study, the GFS is used for
developing an online SHM system using blade response, loads, and
strains for composite helicopter rotor blades.

In this paper, physics-based damagemodels of the composite rotor
blades are developed, and the stiffness degradation of the composite
blade is linked to the life consumption of the structure using curvefits
based on a phenomenological fatigue-damage model. Next, an
aeroelastic analysis of the damaged rotor is used to develop a fuzzy
logic system, which predicts the remaining life of the structure from
measured response and loads data. Two possibilities of damage
occurrence in the composite rotor blade are addressed using two
GFSs. The first GFS is developed for prediction of global life
consumption using displacement-, force-, and moment-based mea-
surement deltas (deviations between the undamaged and damaged
blade). The second GFS is developed for prediction of local life
consumption using strain-based measurement deltas. The SHM
system of a composite helicopter rotor blade is demonstrated using a
two-cell airfoil-section beam with stiffness properties representing a
stiff in-plane helicopter rotor blade.

Analysis

The analysis of the damaged composite rotor blade is explained in
three parts. The first part summarizes the mathematical model of a
helicopter rotor system. The second part discusses the composite
rotor blade cross-sectional analysis. The composite cross-sectional
properties are included in the mathematical model of the helicopter
rotor system. The third part discusses the modeling of the key
damagemodes in composite materials. These key damagemodes are
included in the mathematical model of the helicopter rotor system
through the composite cross-sectional properties. A detailed
formulation of the forward-flight simulation of damaged composite
rotor blade is available in Pawar and Ganguli [16].

Mathematical Model of a Helicopter Rotor System

The helicopter is represented by a nonlinear model of rotating
elastic rotor blades dynamically coupled to a six-degree-of-freedom
rigid fuselage. Each blade undergoes flap (out-of-plane) bending, lag
(in-plane) bending, elastic twist, and axial displacement. Governing
equations are derived using a generalized Hamilton’s principal
applicable to nonconservative systems:Z

 2

 1

��U � �T � �W� d � 0 (1)

where �U and �T include energy contributions from components that
are attached to the blade (pitch link, lag damper, etc.). The effects of
the damaged and undamaged composite materials are included with
the virtual strain energy through the elastic stiffness matrix
(discussed in the next section). External aerodynamic forces on the
rotor blade contribute to the virtual work variational �W. The
aerodynamic forces and moments are calculated using an inflow
distribution from the Bagai–Leishman free wake model and
unsteady effects are accounted for using the Leishman–Beddoes
model [12].

A finite element method is used to discretize the governing
equation of motion and allows for the accurate representation of
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Fig. 1 Fatigue-damage growth curve.
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complex hub kinematics and nonuniform blade properties. After
finite element discretization, Hamilton’s principle is written as

Z
 f

 i

XN
i�1
��Ui � �Ti � �Wi� d � 0 (2)

Each of the beam finite elements has 15 degrees of freedom. These
degrees of freedom correspond to cubic variations in axial elastic and
(flap and lag) bending deflections and to quadratic variation in elastic
torsion. Between the elements, there is continuity of slope and
displacement for flap- and lag-bending deflections and continuity of
displacements for elastic twist and axial deflections.

An aeroelastic analysis is carried out at the specified trim
condition. The finite element equations representing each rotor blade
are transformed to normal mode space for an efficient solution of the
blade response. The nonlinear, periodic, normal mode equations are
then solved for steady response using afinite element in timemethod.
Steady and vibratory components of the rotating frame blade loads (i.
e., shear forces and bending/torsion moments) are calculated using
the force summation method. In this approach, blade aerodynamic
and inertia forces are integrated directly over the length of the blade.
Fixed-frame hub loads are calculated by summing the contributions
of individual blades. A coupled trim procedure is carried out to
simultaneously solve for the blade response, pilot input trim controls,
and vehicle orientation. The coupled trim procedure is essential for
elastically coupled blades, because elastic deflections play an
important role in the steady net forces andmoments generated by the
rotor. For the results in this paper, all four blades are identical and
have identical damage. The results are for an isolated rotor in forward
flight.

Composite Rotor Blade

The composite helicopter blade is modeled as a one-dimensional,
thin-walled beam undergoing extension, torsion, flap (out-of-plane),
and lag (in-plane) bending, using the Chandra and Chopra [41]
model. Chandra and Chopra’s thin-walled composite beam model
includes terms due to constrained warping torsion and terms due to
transverse shear. The effects of transverse shear are included by static
condensation. The restrainedwarping effect is negligible for a closed
section and is therefore ignored for this work. The stiffness matrix of
the order of (9 � 9) is thus reduced to a stiffnessmatrix of the order of
(4 � 4) [42]:

N
Mx

�My

Ts

2
664

3
775�

K011 K012 K013 K015
K022 K023 K025

sym K033 K035
K055

2
664

3
775�

W 0

�0y
�0x
�0z

2
664

3
775 (3)

The coefficients K0ij of the stiffness matrix are obtained by static

condensation of the (9 � 9) stiffness matrix K. The terms in the K
matrix depend on the beam cross section and geometry and are
expressed in terms of the A, B, and D matrices, where EA� K011,
EIy � K022, EIz � K033, and GJ � K055 are the axial, flap, lag, and
torsion stiffness, respectively. The effects of the composite material
are included in the forward-flight simulation through the strain
energy expression using the cross-sectional stiffness matrix derived
in this section. The effects of the key damages in composite material
are included in the forward-flight simulation through the cross-
sectional stiffness matrices using the progressive damage
accumulation model given in the next section.

Progressive Damage Accumulation

Matrix cracking, delamination/debonding, and fiber breakage are
the key damagemodes in composite materials. These damagemodes
are modeled at the lamina and laminate level, as summarized next.

Matrix Cracking

The effects of matrix cracking in composite materials are included
through the extension A, extension-bending B, and bending D

stiffness matrices. The stiffness matrices for the presence of matrix
cracks A�c�, B�c�, and D�c� are obtained by subtracting the damage
matrices�A,�B, and�D from the stiffness matricesA,B, andD
of the virgin laminate:

A �c� �A ��A (4)

B �c� � B ��B (5)

D �c� �D ��D (6)

These stiffness matrices reduce with increasing crack density. The
dimensionless crack density �k for the ply k is defined by

�k � tk=sk (7)

where sk is the average crack spacing and tk is the thickness of ply k.
The changes in stiffnessmatrices are obtained using theAdolfsson

and Gudmundson [43] matrix-crack model, which relates the strain
increment produced by an array of cracks to the total crack
displacement.

Debonding/Delamination

After a certain crack density, the stiffness gets saturated at a crack
density known as the saturation crack density �0. However, as
damage increases, matrix cracks may induce more severe damage at
the crack tip, such as debonding/delamination. The ply stiffness due
to the presence of debonding/delamination can be expressed as

QM
xx��� � rEdxx��� (8)

QM
yy��� � rEdyy��� (9)

QM
yx��� � r�dxy���Edxx��� (10)

QM
xy��� � r�dyx���Edxx��� (11)

QM
ss��� �Gdxy��� (12)

where

r� �1 � �xy����yx�����1 (13)

Stiffness reduces with increase in the effective strain ratio.

Fiber Breakage

Because fibers are the primary load-carrying elements of the fiber-
reinforced composite material, fiber breakage is considered as an
extreme damage. Based upon the fiber bundle theory, the effects of
fiber breakage can be defined as

��xx
��yy
��xy

0
@

1
A� QM

xx��� QM
xy��� 0

QM
yx��� QM

yy��� 0

0 0 QM
ss���

0
@

1
A df 0 0

0 df 0

0 0 df

0
@

1
A ��xx

��yy
��xy

0
@

1
A

(14)

where df is the degradation coefficient for fiber breakage, which has
the following form:

df � e��Af=�
2�� (15)
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Because � is a constant for a given material, df varies with the area
ratio Af=�

2.

Life of the Structure

The stiffness degradation of the structure can be correlated to the
life of the structure. The stiffness degradation is transformed as a
function of the life of the structure based on the phenomenological
theory developed for fatigue life analysis of composite materials by
Mao and Mahadevan [25].

D� q�t=tf�m1 � �1 � q��t=tf�m2 (16)

where D� �E0 � E�=�E0 � Ef�, E0 is the initial stiffness t� 0, Ef
is the stiffness at final-failure time tf, and E is stiffness at any instant
of time t. We use the functional relationship given in Eq. (16) as a
curve fit to link the physics-based damage with the remaining life of
the structure. Unlike othermodels for compositematerials, themodel
in Eq. (16) captures the three phases of composite material
degradation using one equation. Note that though Eq. (16) was
originally developed to curve fit, relating the continuum damage
variableDwith time, it can also be used for other variables that show
qualitatively similar behavior. Equation (16) is a mathematical
model of curves of the type shown in Fig. 1.

The values of the curve-fitting parameters q, m1, and m2 are
obtained by matching the stiffness-reduction values obtained by
physical-damage modeling and by curve fitting Eq. (16) at the initial
and final life of the structure and at the transition points of matrix
cracking to debonding/delamination and debonding/delamination to
fiber breakage. A detailed discussion of the transition between
damage modes is given by Pawar and Ganguli [15].

Behavior of the Composite Rotor Blade

To investigate the behavior of the composite rotor blade due to life
consumption, a two-cell airfoil-section beam with stiffness prop-
erties representing a stiff in-plane rotor is developed. Geometric
properties and ply orientation of the two-cell airfoil section are
shown in Fig. 2. Ply elastic stiffness properties are EL � 206 GPa
(30 msi), ET � 20:7 GPa (3 msi), GLT � 8:3 GPa (1.2 msi), and
�LT � 0:3. The length l of the blade is 5.08 m (200 in.). All of the
laminates used in this paper are selected from the family of �0=	
45=90�s composites.

Effect on Cross-Sectional Stiffnesses

The stiffness reduction obtained due to the key damage modes are
correlated to the blade life consumption. Figure 3 shows the
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Fig. 2 Details of two-cell airfoil-section beam.
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reduction in the normalized bending and torsion cross-sectional
stiffness of the two-cell airfoil-section beam due to the key damage
modes. The stiffness reduction, which is a function of the physical-
damage parameters, is expressed as a function of the blade life
consumption usingEq. (16). Using the curve-fit equation for bending
stiffness gives

D1 � 0:3

�
t

tf

�
0:2

� 0:7

�
t

tf

�
8

(17)

whereD1 � �EIy0 � EIy�=�EIy0 � EIyf�, EIy0 is the initial bending
stiffness t� 0, EIyf is the bending stiffness at final-failure time tf,
and EIy is the bending stiffness at any instant of time t. The same
model fits the flap- and lag-bending stiffness, because degradation
affects the normalized flap and lag stiffness in a similar manner.

For torsion stiffness,

D2 � 0:6

�
t

tf

�
0:3

� 0:4

�
t

tf

�
8

(18)

where D2 � �GJ0 � GJ�=�GJ0 � GJf�, GJ0 is the initial torsion
stiffness t� 0,GJf is the torsion stiffness at final-failure time tf, and
GJ is torsion stiffness at any instant of time t. HereD1 andD2 can be
interpreted as continuum damage variables in bending and torsion,
respectively.

The bending and torsion stiffness reductions due to life
consumption are shown in Fig. 4. To study the life consumption in
various damage modes, the stiffness-reduction plots are divided in

three zones of matrix cracking, debonding/delamination, and fiber
breakage. These correspond to stages 1, 2, and 3 of the phenome-
nological model. From Fig. 4, it is observed that the life consumption
in thematrix-cracking zone is about 12–15% of the total life. The life
consumption in the debonding/delamination zone is about 45–55%
of the total life, and the remaining life of the structure is covered by
the final-failure fiber breakage.

Effect on Static Response

Beam stiffness provides some indication of damage growth in
composites. Changes in the beam stiffness can also change
parameters such as beam static response under a tip load or under
gravity loads, which can be measured at periodic intervals to assess
the condition of the blade. The response of the airfoil-section
cantilever beam under unit static loads at the free end is obtained.
Figure 5 shows an increase in the normalized tip-static responses �y
(bending) and �z (torsion) of the beam, with an increase in the life
consumption. Here, �0y and �

0
z are tip-static responses of the beams

with virgin laminate. Similar to the stiffness plots, the plots of static
responses are also divided into three damage zones. The life
consumption of the composite blade due to matrix cracking is about
12–15% of the total life. The rate of increase in static deflection in
debonding/delamination zone is very slow. At the end of the
debonding/delamination zone, about 60–65% of the blade life is
consumed and the fiber-breakage zone begins. Though fiber break-
age is the catastrophic damage mode, the static responses show that
the initial life of about 10–15% in this zone does not show a sudden
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increase in the static response. Therefore, the structure can be
conservatively kept in working condition up to the transition point of
debonding/delamination to fiber breakage. A more aggressive thres-
hold at about 70–80% of the life consumption could be used to save
costs at the cost of a higher risk of failure. In general, threshold
selection in health monitoring involves a tradeoff between cost
and risk.

System for Predicting Life Consumption

Until now, the results focused on static variables such as stiffness
and blade-tip deflection under a static loading. Obviously, there is a
close relationship between stiffness and static displacements of the
structure. However, static deflection cannot be used for online health
monitoring. To simulate online measurements, an aeroelastic analy-

sis of the composite rotor blade is performed. The composite damage
models are integrated into the rotor aeroelastic analysis. The rotor
system behavior is further linked with life consumption through the
relationship between stiffness and time. The measurement deltas
between a damaged and undamaged blade are used to develop two
genetic fuzzy systems for the prediction of global and local physical
damage and life consumption.

Numerical Simulation of Measurement Deltas

For SHM, it is important to study the effects of damage on the
behavior of the structure and the changes in measurable system
properties due to damage. A four-bladed, stiff in-plane hingeless
composite rotor with progressive damage accumulation in the
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Fig. 7 Change in peak-to-peak blade root forces (N) and moments (N �m) for increasing matrix-crack density.
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Fig. 9 Change in peak-to-peak shear strainmeasured at various locations for various crack densities and cracks at various locations (root is 0m and tip

is 5.08 m); crack locations are T, tip; O, outboard; C, center; I, inboard, and R, root.
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Fig. 10 Change in peak-to-peak shear strain measured at various locations for various effective strain ratios and debonding/delamination at various

locations (root is 0 m and tip is 5.08 m); crack locations are T, tip; O, outboard; C, center; I, inboard, and R, root.
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composite material is considered. Geometric properties and ply
orientation of the two-cell airfoil section are the same as given in
the previous section. Results are obtained in forward flight at an
advance ratio (�� V=�R) of �� 0:3, moderate thrust condition
CT=� � 0:07, lock number � � 6:34, and radius of gyration
mk2m1=m0R

2 � 0:000174, mk2m2=m0R
2 � 0:00061, and m=m0 � 1.

To develop the GFS, the peak-to-peak values between the
undamaged and damaged rotor blade obtained at the location of
maximum values of these measurements or at specific intervals are
considered as measurement deltas. A detailed discussion of the
effects of the key damage modes in the composite materials on
various properties of the rotor blade is available in Pawar and
Ganguli [16].

The measurement deltas based on deflections and forces are used
to develop the global SHM system, andmeasurement deltas based on
shear strains are used to develop the local SHM system.

Figure 6 shows the behavior of displacements in the presence of
matrix cracking and debonding/delamination. There is a significant
change in the flap and torsion deflections and a much smaller change
in the torsion deflection. The baseline peak-to-peak lag, flap, and
torsion responses of the blade are 0.1363 m, 0.1353 m, and
0.0993 rad, respectively. Figures 7 and 8 show the behavior of loads
duringmatrix-cracking and debonding/delamination damagemodes.
Some of the changes are discontinuous and nonmonotonic due to the
use of peak-to-peak measurements and the complicated and
nonlinear helicopter dynamics and aerodynamics. It can be seen from
Fig. 7 that asmatrix cracking saturates near the crack density of 3, the
changes in peak-to-peak deflections taper off. Also, the effect of
delamination is less during the initial stages and increases near the
region of transition to fiber breakage. The baseline peak-to-peak
values of longitudinal, lateral, and vertical forces are 6580, 7980, and
5940N, respectively. The baseline values of the rolling, pitching, and
yawing moments are 1240, 6280, and 2115 N 
m, respectively.
Quite large changes in the peak-to-peak loads are therefore produced
by damage. As expected, the change is much less for the matrix-
crackingmode than for the delaminationmode.A detailed discussion
of the effects of damage on rotor system behavior is given by Pawar
and Ganguli [16].

To study the effects of local damage, the peak-to-peak changes in
shear strains due to matrix-cracking and debonding/delamination
damage are calculated at five locations on the blade, ranging from the

root to the tip. These peak-to-peak changes in shear strains are shown
in Figs. 9 and 10 for matrix cracking and debonding/delamination,
respectively. All of the strains are calculated on the top side of the
beamand along the line passing through the point 0.35 con a two-cell
airfoil section. Themaximumchange in shear strain occurswhere the
damage occurs along the blade length in the case of local damage.
Therefore, the shear strain is a useful indicator to predict damage
location. For the matrix-cracking results in Fig. 9, the values of the
peak-to-peak shear strains are much lower than for the rotor with
debonding/delamination. Also, the values of the changes in shear
strain increase with increasing crack density. For the delamination
results in Fig. 10, the strains are higher than for matrix cracking and
increase with the effective strain ratio. Debonding/delamination is a
serious damage and leads to considerable change in the strains,
compared with matrix cracking. Also, the high value of the shear
strains are because they are peak-to-peak values of strains that vary
considerably along the azimuth.

Fuzzy Logic System

A genetic fuzzy system is developed next, to address the issue of
detecting and locating damage and the residual life of the structure in
the presence of noise. The advantage of this approach over
straightforward strain monitoring using thresholds is the ability to
handle uncertainty in both the modeling and measurements, as well
as to provide linguistic guidelines for maintenance that are more
useful for practical applications and less prone to thresholding errors.
Before developing the genetic fuzzy system, a brief description of a
fuzzy logic system is given in this section. Fuzzy logic is a unique
soft-computing method that simultaneously handles numerical data
and linguistic knowledge. A fuzzy logic system is a nonlinear
mapping of an input feature vector into a scalar output [44]. Fuzzy set
theory and fuzzy logic provide the framework for the nonlinear
mapping. Fuzzy logic systems have been widely used in engineering
applications because of the flexibility they offer designers and their
ability to handle uncertainty. A fuzzy logic system can be expressed
as a linear combination of fuzzy basis functions and is a universal
function approximator. The schematic diagram of fuzzy logic is
shown in Fig. 11 for �! as crisp inputs and damage and damage
location as crisp outputs. Here,�! is ameasurement delta that can be
changed in frequency between the undamaged and damaged

Fuzzifier Fuzzy Inference 
Engine

Defuzzifier

Fuzzy Rule Base

Damage Detection,

Location, and Size

∆ω

Fuzzy Logic System (FLS)

Fig. 11 Schematic representation of a fuzzy logic system.
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Fig. 12 Schematic representation of development of SHM.
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structure, for example. It could also be changed in strains, blade-tip
responses, and loads in a helicopter rotor blade.

A typical fuzzy logic system maps crisp inputs to crisp outputs
using four basic components: rules, fuzzifier, inference engine, and
defuzzifier. Rules can come from experts or can be obtained from
numerical data. In either case, engineering rules are expressed as a
collection of IF–THEN statements such as “IF u1 is HIGH and u2 is
LOW, THEN v is LOW.”

The fuzzifiermaps crisp input numbers into fuzzy sets. It is needed
to activate rules that are expressed in terms of linguistic variables. An
inference engine of the fuzzy logic system maps fuzzy sets to fuzzy
sets and determines the way in which the fuzzy sets are combined. In
several applications, crisp numbers are needed as an output of the
fuzzy logic system. In those cases, a defuzzifier is used to calculate
crisp values from fuzzy values.

Two aspects in the design of the fuzzy system are difficult:
1) generating the best rule set and 2) tuning the membership
functions. The rules and the membership functions must accurately
capture the relationship between the independent and dependent
variable.

Unfortunately, the tasks of tuning membership function and
generating rules are not independent. The task of selecting
membership functions and rule values is difficult, because the
information has to be obtained from numerical data of the system to
be modeled.

Another problem is selecting an appropriate number of fuzzy sets.
Most studies use experience to come up with this number. The
problems in the design of a fuzzy system can be addressed by using a
learning algorithm such as the genetic algorithm. This leads to the
genetic fuzzy system forwhich the design for the rotor SHMproblem
is discussed in the nest section.

Development of a Genetic Fuzzy System

There are two possibilities of damage in composite rotor blades.
The first possibility is that the damagewill be approximately uniform

along the whole blade, which may occur due to the vibrating
environment of the helicopter. The second possibility is that the
damagewill be localized, whichmayoccur due to a sudden impact by
a foreign object or due to an uneven loading condition. In this section,
twoGFSs are formulated. The first or global GFS is for predicting the
physical damage and life consumption in the matrix-cracking and
debonding/delamination zones along thewhole blade. The second or
local GFS is for predicting the physical damage and life consumption
in the matrix-cracking and debonding/delamination zones in various
parts of the blade. The fiber-breakage damage mode in composite
materials is considered as a catastrophic damagemode, and detection
of such a damage is not useful. Therefore, fiber breakage is not
considered when designing the GFS.

The schematic diagram of the SHM system development process
is shown in Fig. 12. The difference between the global and local
SHM systems lies in the choice of sensor measurement z in Fig. 12,
as discussed next.

Global Damage Detection

The global damage detection system is developed to predict the
physical damage and life consumption along the whole blade.

Input and Ouput. Inputs to the global GFS are measurement
deltas based on displacement, force, and moment. The outputs of
the global GFS are various damage levels in the matrix-cracking
and debonding/delamination zones. The objective is to find the
mapping between the measurement deltas and various damage
levels.

Fuzzification. In this fuzzy system, physical-damage parameters
and life-consumption parameters in the matrix-cracking and
debonding/delamination zones are crisp numbers. To get a degree of
resolution of the extent of physical damage and life consumption, the
physical-damage parameter and life-consumption parameter are
allowed to have several zones based on the physical damage and split
into linguistic variables, as shown in Table 1. These classifications
are based on the numerical results obtained for matrix cracking and

Table 1 Linguistic classification of damage for the genetic fuzzy system for global damage detection

No. Physics-based rule Damage level Life con (res life) Prog action

1 Undamaged Nil crack density Nil (100%) OK
2 Very small crack density Crack density 0–0.8 0–2.5% (97.5%) OK
3 Small crack density Crack density 0.8–1.2 2.5–5% (95%) OK
4 Considerable crack density Crack density 1.2–1.6 5–7% (93%) OK
5 High crack density Crack density 1.6–2.0 7–8.5%(91.5%) OK
6 Very high crack density Crack density 2.0–2.4 8.5–10% (90%) OK
7 Saturation crack density Crack density 2.4–3.0 10–12 % (88%) OK
8 Transition of MC to D/Da CD 3.0b to ESR 0.8c 12–20% (80%) Watch
9 Slight D/D ESR 0.8–0.88 20–43% (67%) Watch
10 Moderate D/D ESR 0.88–0.9 43–50%(50%) Watch
11 Severe D/D ESR 0.9–0.92 50–56% (44%) Watch
12 Extreme D/D ESR 0.92–0.94 56–62% (38%) Remove

aMC denotes matrix cracking and D/D denotes debonding/delamination.
bSaturation crack density.
cThe effective strain ratio (ESR) at which the effects of D/D become considerable prognostic actions: 1) blade is OK, no action is
required; 2) put the blade under watch, and 3) remove the blade; take for thorough inspection.

Table 2 Linguistic classification of damage for local damage detection

Damage name Damage level Life con (res life) Prog actionb

Undamaged Matrix-crack density zero Nil (100%) OK
Small crack density Matrix-crack density 0.4 About 2% (98%) OK
Moderate crack density Matrix-crack density 1.2 About 5% (95%) OK
High crack density Matrix-crack density 1.6 About 7% (93%) OK
Very high crack density Matrix-crack density 2.4 About 10% (90%) OK
Slight D/Da ESR 0.8 About 20% (80%) Watch
Moderate D/D ESR 0.88 About 43% (67%) Watch
Severe D/D ESR 0.92 About 56% (44%) Remove

aD/D denotes debonding/delamination.
bPrognostic actions: 1) blade is OK, no action is required; 2) put the blade under watch, and 3) remove the blade; take for thorough
inspection.
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debonding/delamination. The displacement measurement deltas are
first considered for defining the rules, because they show approx-
imately monotonic behavior with respect to matrix cracking and
debonding/delamination (Fig. 6). Next, the force and moment
measurement deltas (Figs. 7 and 8) are considered for prediction of
matrix cracking and debonding/delamination. The first step in fuzzy
logic is to transform typical measurements into fuzzy linguistic
measures. This is done using the relation between peak-to-peak
displacements and physical-damage parameters, shown in Fig. 6.
Table 1 shows the linguistic and numerical measures based on the
displacement measurement deltas. This table also shows the relation

between the physical-damage parameters and the life-consumption
parameters of the composite rotor blade. The linguistic classifi-
cations allow the damage parameters and life-consumption
parameters to be grouped into small levels that are more robust to
the presence of uncertainty and also provide a fuzzy rule base that is
similar to human reasoning. The different levels of damage can be
used to create different alarm levels to be shown to the user.

The measurement deltas�W,��,�Fx,�Fy,�Fz,�Mx,�My,
and �Mz are treated as fuzzy variables. Fuzzy sets with Gaussian
membership functions are used to define these input variables. The
Gaussian membership function can be written as

Table 3 Midpoints and standard deviations of rules for the genetic fuzzy system for global damage detection

No. �W �� �Fx �Fy �Fz �Mx �My �Mz

1 0.00 (0.10) 0.00 (0.12) 0.00 (0.19) 0.00 (0.16) 0.00 (0.14) 0.00 (0.18) 0.00 (0.12) 0.00 (0.19)
2 �0:07 (0.11) 0.09 (0.13) �0:11 (0.13) �0:52 (0.17) �0:05 (0.14) �0:07 (0.16) �0:18 (0.19) �0:49 (0.13)
3 0.03 (0.17) 0.32 (0.11) �0:12 (0.15) �0:96 (0.18) �0:06 (0.17) �0:04 (0.17) �0:34 (0.19) �1:00 (0.17)
4 0.15 (0.11) 0.49 (0.11) 0.11 (0.12) �0:70 (0.16) 0.02 (0.13) 0.18 (0.11) �0:25 (0.15) �0:95 (0.13)
5 0.27 (0.17) 0.64 (0.17) 0.38 (0.16) �0:30 (0.15) 0.08 (0.13) 0.43 (0.13) �0:14 (0.20) �0:75 (0.12)
6 0.42 (0.10) 0.76 (0.15) 0.75 (0.13) 0.29 (0.15) 0.20 (0.18) 0.80 (0.19) 0.07 (0.15) �0:33 (0.15)
7 0.57 (0.14) 0.84 (0.17) 1.00 (0.19) 0.83 (0.19) 0.33 (0.14) 1.00 (0.18) 0.29 (0.12) 0.06 (0.14)
8 0.51 (0.16) 0.67 (0.17) 0.49 (0.13) 1.00 (0.16) 0.40 (0.13) 0.77 (0.19) 0.18 (0.13) 0.22 (0.15)
9 0.42 (0.17) 0.52 (0.15) �0:21 (0.14) 0.76 (0.11) 0.44 (0.16) 0.50 (0.13) 0.07 (0.11) 0.16 (0.18)
10 0.50 (0.15) 0.61 (0.18) �0:42 (0.16) 0.50 (0.18) 0.49 (0.16) 0.49 (0.13) 0.20 (0.18) 0.06 (0.19)
11 0.65 (0.14) 0.77 (0.11) �0:45 (0.16) 0.37 (0.18) 0.64 (0.16) 0.60 (0.16) 0.41 (0.20) 0.10 (0.18)
12 0.98 (0.19) 1.00 (0.12) �0:51 (0.10) 0.07 (0.18) 1.00 (0.11) 0.71 (0.20) 1.00 (0.12) 0.03 (0.17)

Table 4 Success rate for various testing noise level and training noise level of 0.15 for global damage detection

using displacement and force

Displacements Forces

No. SR0:05 SR0:1 SR0:15 SR0:20 SR0:05 SR0:1 SR0:15 SR0:20

1 96.90 79.70 69.90 60.20 100.00 100.00 99.60 95.50
2 97.80 81.60 68.70 50.50 100.00 100.00 97.00 90.30
3 100.00 97.50 77.60 65.10 100.00 100.00 99.70 95.90
4 100.00 81.20 46.10 29.10 100.00 100.00 89.30 66.30
5 100.00 92.40 69.40 49.90 100.00 100.00 100.00 100.00
6 98.10 61.40 35.50 24.40 100.00 100.00 100.00 99.80
7 97.70 73.60 55.10 41.70 100.00 100.00 100.00 100.00
8 80.90 48.80 27.80 21.10 100.00 100.00 100.00 100.00
9 98.40 73.90 60.40 48.20 100.00 100.00 96.40 91.30
10 82.30 46.60 31.60 23.70 100.00 97.20 88.30 78.00
11 94.50 66.00 46.90 34.00 100.00 91.30 76.30 63.90
12 100.00 100.00 100.00 96.60 100.00 100.00 100.00 96.60
Avg 95.55 75.23 57.42 45.38 100.00 99.04 95.55 89.80
Min 80.90 46.60 27.80 21.10 100.00 91.30 76.30 63.90

Table 5 Success rate for various testing noise level and training noise level of 0.15 for global damage detection

using moments and all measurements

Moments All

No. SR0:05 SR0:1 SR0:15 SR0:20 SR0:05 SR0:1 SR0:15 SR0:20

1 100.00 100.00 100.00 97.50 100.00 100.00 100.00 100.00
2 100.00 100.00 100.00 96.40 100.00 100.00 100.00 99.90
3 100.00 99.90 94.70 90.60 100.00 100.00 100.00 99.30
4 100.00 94.90 74.30 45.80 100.00 100.00 98.30 90.20
5 100.00 100.00 99.90 97.80 100.00 100.00 100.00 100.00
6 100.00 100.00 99.50 89.60 100.00 100.00 100.00 100.00
7 100.00 100.00 95.50 89.00 100.00 100.00 100.00 100.00
8 100.00 99.80 87.00 68.00 100.00 100.00 100.00 99.50
9 100.00 91.40 75.40 60.80 100.00 100.00 95.30 86.30
10 100.00 93.20 76.70 65.20 100.00 100.00 98.90 94.40
11 100.00 97.40 79.70 67.70 100.00 100.00 98.00 94.60
12 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Avg 100.00 98.05 90.23 80.70 100.00 100.00 99.21 97.02
Min 100.00 91.40 74.30 45.80 100.00 100.00 95.30 86.30
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��x� � e�0:5�x�m� �2 (19)

were m is the midpoint and � is the standard deviation. Gaussian
fuzzy sets have the advantage of providing smooth transition
between the different sets [44]. Furthermore, they always have
nonzero values on the real number line, and therefore every rule in the
fuzzy system fires to some degree. Changes in the measurement
deltas are calculated using the aeroelastic analysis for different levels
of damages along the whole blade. The midpoints of the Gaussian
function are calculated by normalizing the changes in measurement
deltas with their maximum values. The GFS is tested using the
normalized noisy measurement delta x, which is derived from the

noise model given as

x�m� u	 (20)

The addition of noise to the simulations is needed to make it
realistic and to develop a robust model-based diagnostic system. A
noise-level parameter 	 defines the maximum variance between the
computed value of m (normalized) and simulated measured value x
(normalized), which is a simulation of the practical measurement.

Rule Generation. Rules for the fuzzy system are obtained by
fuzzification of the numerical values obtained from an aeroelastic
analysis of the composite helicopter blade in forward flight. The
fuzzy sets corresponding to�W,��,�Fx,�Fy,�Fz,�Mx,�My,
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Fig. 13 Effect of various measurements on the minimum and average success rates of a genetic fuzzy logic system for global damage detection.

Table 6 Midpoints and standard deviations of rules for local damage detection using strain-based

measurement deltas

No. Rule ��Tip ��Outboard ��Center ��Inboard ��Root

1 Undamaged 0 (0.18) 0 (0.14) 0 (0.17) 0 (0.13) 0 (0.15)
2 Small CD at the tip 0.08 (0.13) �0:00 (0.16) 0.00 (0.10) 0.00 (0.13) �0:00 (0.13)
3 Small CD at the outboard 0.00 (0.19) 0.02 (0.11) 0.01 (0.14) 0.00 (0.16) �0:00 (0.16)
4 Small CD at the center 0.00 (0.16) 0.01 (0.10) 0.05 (0.15) 0.01 (0.16) �0:00 (0.16)
5 Small CD at the inboard 0.01 (0.13) 0.01 (0.14) 0.01 (0.19) 0.04 (0.13) �0:01 (0.12)
6 Small CD at the root 0.01 (0.14) 0.01 (0.12) 0.02 (0.13) �0:00 (0.13) 0.05 (0.18)
7 Moderate CD at the tip 0.17 (0.12) �0:00 (0.17) 0.00 (0.18) 0.00 (0.16) �0:00 (0.15)
8 Moderate CD at the outboard 0.01 (0.11) 0.05 (0.13) 0.02 (0.20) 0.01 (0.19) 0.00 (0.19)
9 Moderate CD at the center 0.02 (0.10) 0.01 (0.18) 0.11 (0.12) 0.02 (0.12) �0:00 (0.19)
10 Moderate CD at the inboard 0.04 (0.13) 0.02 (0.18) 0.04 (0.14) 0.09 (0.12) �0:01 (0.18)
11 Moderate CD at the root 0.07 (0.19) 0.03 (0.13) 0.06 (0.18) 0.02 (0.14) 0.13 (0.16)
12 High CD at the tip 0.19 (0.20) �0:00 (0.11) 0.00 (0.14) 0.01 (0.17) �0:00 (0.17)
13 High CD at the outboard 0.01 (0.17) 0.05 (0.19) 0.02 (0.15) 0.01 (0.17) 0.00 (0.15)
14 High CD at the center 0.02 (0.11) 0.02 (0.11) 0.13 (0.15) 0.02 (0.19) �0:00 (0.20)
15 High CD at the inboard 0.05 (0.17) 0.02 (0.12) 0.04 (0.20) 0.11 (0.17) �0:01 (0.18)
16 High CD at the root 0.09 (0.13) 0.03 (0.18) 0.07 (0.12) 0.02 (0.11) 0.16 (0.11)
17 Very high CD at the tip 0.21 (0.17) �0:00 (0.18) 0.00 (0.17) 0.01 (0.19) �0:00 (0.12)
18 Very high CD at the outboard 0.02 (0.14) 0.06 (0.14) 0.02 (0.14) 0.01 (0.17) 0.00 (0.12)
19 Very high CD at the center 0.03 (0.14) 0.02 (0.19) 0.15 (0.17) 0.02 (0.18) �0:00 (0.13)
20 Very high CD at the inboard 0.07 (0.15) 0.03 (0.19) 0.05 (0.17) 0.13 (0.14) �0:01 (0.14)
21 Very high CD at the root 0.11 (0.17) 0.04 (0.14) 0.08 (0.14) 0.03 (0.19) 0.19 (0.17)
22 Slight D/D at the tip 0.41 (0.16) �0:01 (0.15) 0.00 (0.16) 0.01 (0.14) �0:00 (0.11)
23 Slight D/D at the outboard 0.04 (0.16) 0.12 (0.15) 0.03 (0.10) 0.02 (0.15) 0.00 (0.10)
24 Slight D/D at the center 0.10 (0.12) 0.04 (0.13) 0.33 (0.16) 0.05 (0.14) 0.01 (0.11)
25 Slight D/D at the inboard 0.28 (0.17) 0.09 (0.16) 0.18 (0.19) 0.36 (0.18) 0.06 (0.16)
26 Slight D/D at the root 0.48 (0.14) 0.15 (0.19) 0.31 (0.12) 0.18 (0.15) 0.62 (0.16)
27 Moderate D/D at the tip 0.59 (0.19) �0:01 (0.20) 0.00 (0.12) 0.01 (0.17) �0:00 (0.18)
28 Moderate D/D at the outboard 0.07 (0.20) 0.18 (0.11) 0.05 (0.17) 0.03 (0.10) 0.01 (0.18)
29 Moderate D/D at the center 0.23 (0.15) 0.08 (0.12) 0.59 (0.15) 0.09 (0.10) 0.04 (0.13)
30 Moderate D/D at the inboard 0.42 (0.20) 0.13 (0.20) 0.27 (0.19) 0.51 (0.12) 0.12 (0.19)
31 Moderate D/D at the root 0.83 (0.15) 0.24 (0.18) 0.48 (0.15) 0.31 (0.18) 0.94 (0.12)
32 Severe D/D at the tip 0.76 (0.13) �0:01 (0.11) 0.00 (0.11) 0.02 (0.16) �0:01 (0.11)
33 Severe D/D at the outboard 0.64 (0.17) 1.00 (0.19) 0.27 (0.13) 0.19 (0.15) 0.15 (0.12)
34 Severe D/D at the center 0.48 (0.11) 0.15 (0.17) 1.00 (0.15) 0.18 (0.15) 0.12 (0.12)
35 Severe D/D at the inboard 1.00 (0.18) 0.28 (0.15) 0.54 (0.14) 1.00 (0.20) 0.40 (0.10)
36 Severe D/D at the root 0.88 (0.14) 0.26 (0.19) 0.51 (0.13) 0.33 (0.14) 1.00 (0.17)
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and �Mz are generated by taking the change in measurements
obtained from the aeroelastic analysis solution as midpoints of
membership functions corresponding to a damage level.

For each measurement delta corresponding to a given damage
level, the degree of membership in the fuzzy set is calculated. Each
measurement delta is assigned to the fuzzy set with the maximum
degree ofmembership. One rule is obtained for each damage level by
relating the measurement deltas. The standard deviation is obtained
by maximizing the success rate for each set.

The fuzzy rules provide a knowledge base and represent how a
human engineer would interpret data to isolate a damage level using
measurement deltas. The fuzzy rules represent a fuzzified model of
the measurements obtained by an aeroelastic analysis for each
damage level. Because Gaussian fuzzy sets asymptotically
approaching zero far from the midpoint are used, all of the rules
fire at some level. For any given input set of measurement deltas, the
fuzzy rules are applied using product implication. Once the fuzzy

rules are applied for a given measurement, we have degrees of
membership for each of the damage levels. For damage-level
isolation, we are interested in the most likely damage level. The
damage level with the highest degree of membership is selected as
the most likely damage level.

Tuning of the Rules. The realistic measurement deltas will be
noisy due to vibrating environment of the helicopter. By generating
noisy measurement deltas and testing the fuzzy system for a known
damage, we can define a success rate. For example, if N is the total
number of classifications and Nc is the number of correct
classifications, the success rate can be defined as

SR � �Nc=N�100 (21)

The success rate of the GFS is calculated by using N number of
noisy training samples. Because the midpoints of the fuzzy sets are
tuned using the aeroelastic analysis, the success rate is a function of
the standard deviations of the Gaussian functions for the fuzzy
system, that is,

SR � SR��ij� (22)

To get a better performance in this environment, the fuzzy system
is tuned with noisy measurement deltas. The uncertainty associated
with variables (i.e., standard deviation of the Gaussian membership
functions) is calculated using a genetic algorithm for optimization of
the success rate:

maximize SR��ij� for �min � �ij � �max;

i� 1; 2; 
 
 
 ;M and j� 1; 2; 
 
 
 ; P
(23)

whereM is the number of rules andP is the number ofmeasurements.
Therefore, the success rate of the GFS is the objective function, and
the standard deviations � corresponding to each rule are the design
variables for the genetic algorithm. The use of formal optimization to
design the fuzzy system leads to an optimal diagnostic system that
provides the best results for the given structure,measurement set, and
noise level in the data.

Local Damage Detection

The local damage detection system is developed to predict the
damage at various locations along the blade.

Input and Output. Inputs to the local GFS are strain-based
measurement deltas at five locations, and outputs are physical-
damage parameters and life-consumption parameters at different
locations. The objective is to find a mapping between the
measurement deltas and physical-damage parameters and life-
consumption parameters at five different locations.

Fuzzification. In this fuzzy system, physical-damage parameters
and life-consumption parameters at a given location are crisp
numbers. The different locations considered are as follows: the tip
ranges from 0 to 20% of the blade from the free end, the outboard
from 20 to 40%, the center from 40 to 60%, the inboard from 60 to
80%, and the root from 80 to 100%.

To get a degree of resolution of the extent of physical damage and
life consumption, physical-damage parameters and life-consump-
tion parameters at each location are allowed several levels and split
into linguistic variables. Fuzzy logic rules are defined based on the

Table 7 Success rate of various rules for local damage detection using

strain-based measurement deltas

Rule no. SR0:03 SR0:05 SR0:10

1 100.00 100.00 100.00
2 100.00 100.00 100.00
3 100.00 100.00 100.00
4 100.00 100.00 100.00
5 100.00 100.00 100.00
6 100.00 100.00 100.00
7 100.00 98.60 81.10
8 100.00 99.60 81.50
9 100.00 99.90 86.00
10 100.00 100.00 95.50
11 100.00 100.00 99.90
12 100.00 99.90 47.20
13 100.00 100.00 84.20
14 100.00 99.80 68.40
15 100.00 100.00 96.10
16 100.00 100.00 83.80
17 100.00 99.30 84.10
18 100.00 97.70 69.20
19 100.00 100.00 89.90
20 100.00 100.00 93.50
21 100.00 100.00 99.40
22 100.00 100.00 100.00
23 100.00 100.00 100.00
24 100.00 100.00 100.00
25 100.00 100.00 100.00
26 100.00 100.00 100.00
27 100.00 100.00 100.00
28 100.00 100.00 100.00
29 100.00 100.00 100.00
30 100.00 100.00 100.00
31 99.90 92.90 74.90
32 100.00 100.00 86.00
33 100.00 100.00 100.00
34 100.00 100.00 100.00
35 100.00 100.00 100.00
36 99.90 91.80 73.90
Avg 99.99 99.43 91.52
Min 99.90 91.80 47.20

Data Reduction

DeflectionsStrains

       GFS

Physical  Damage

Residual  Life

Prognostics

Maintainance ActionUndamaged Blade
           Data

∆ Z

Forces

Fig. 14 Schematic representation of implementation of SHM.
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shear strains obtained for a few key physical-damage parameters.
These shear strains arefirst obtained for physical-damage parameters
and then linked with the life of the blade. The linguistic relations of
the key life-consumption parameters and physical-damage
parameters are shown in Table 2.

Strain-based measurement deltas △�Tip, △�Outboard, △�Center,
△�Inboard, and △�Root are treated as fuzzy variables. Fuzzy sets with
Gaussian membership functions are used to define these input
variables. Change in strains (measurement deltas) is calculated using
an aeroelastic analysis for a combination of five different locations
and seven different levels of damages and are shown in Figs. 9 and
10. Formulation of theGFS system and calculation of the success rate
is done using the algorithm discussed in the previous section.

Testing of GFS

The global and local GFS are tested at various noise levels. All of
the measurements are normalized with their maximum value.

Global Damage Detection

The midpoints and standard deviations of the Gaussian
membership functions for the rules underlying the global GFS with
a training noise level of 0.15 are given in Table 3. Success rates of the
GFS are calculated for various noise levels of 0.03, 0.05, 0.10, 0.15,
and 0.20. The GFS is tested using four sets of measurement deltas,
namely: displacement-, force-, and moment-based measurements
deltas and all measurement deltas together. Tables 4 and 5 show the
success rates for all of the rules for four different sets ofmeasurement
deltas at various noise levels and these results are summarized in
Fig. 13.

From Tables 4 and 5 and Fig. 13, it is observed that the GFS with
displacement-based measurement deltas gives good results at the
noise level of 0.05, with an average success rate of 95.55% and a
minimum success rate of 80.90% transition of matrix cracking to
D/D) and starts deteriorating rapidly with a further increase in noise
level.

TheGFSwith force-basedmeasurement deltas gives a success rate
of 100% at the noise level of 0.05. For a noise level of 0.1, the GFS
with force-basedmeasurement deltas gives an average success rate of
99% and a minimum success rate of 91.3% (severe debonding/
delamination) and starts falling for higher noise levels of 0.15 and
0.20 by giving average success rates of 96 and 89.8% and minimum
success rates of 76 and 63.90%, respectively.

The GFS with moment-based measurement deltas gives a success
rate of 100% at the noise level of 0.05. For a noise level of 0.1, the
GFS with moment-based measurement deltas gives an average
success rate of 98.05% and a minimum success rate of 91.4% (slight
debonding/delamination) and starts falling for higher noise levels of
0.15 and 0.20 by giving average success rates of 96 and 89.8%,
respectively, and minimum success rates of 76 and 63.90%,
respectively.

When all measurement deltas are considered for matrix-cracking
and debonding/delamination detection, the GFS gives a success rate
of 100% up to a noise level of 0.10 and also gives good results with
higher noise levels of 0.15 and 0.20 by giving average success rates
of 99.21 and 97.02%, respectively, and minimum success rates of
95.30 and 86.30%, respectively. Thus, the use of both displacement-
and load-based measurements results in a health-monitoring system
with high levels of accuracy, even with noisy data.

Localized Damage Detection

The midpoints and standard deviations of the Gaussian
membership functions for the local GFS rules are tabulated in
Table 6. These results are obtained at a training noise level of 0.05,
which is found to be good for the strain-based measurement deltas.
The midpoints in this table are normalized with the maximum value
of the corresponding measurement deltas, and corresponding values
of the standard deviations are given in parentheses.

The success rates for prediction of physical damage and life
consumption at various parts of the blades are tested at noise levels of

0.03, 0.05, and 0.10. Table 7 shows the success rate for all of the rules
with various noise levels. From Table 7, it is observed that the local
GFS gives a success rate of 100% up to a noise level of 0.03. For
debonding/delamination zone, the GFS gives a success rate of 100%
for a noise level of 0.03, except for two rules: moderate debonding/
delamination at the root and severe debonding/delamination at the
root. For a noise level of 0.05, the GFS gives an average success rate
of 99.42% and a minimum success rate of 91.8%. The GFS gives a
minimum success rate of 97.70% for the matrix-crack zone and a
minimum success rate of 91.8% for the debonding/delamination
zone for a noise level of 0.05. It can be noted that the GFS gives a
success rate of 100% for debonding/delamination zone up to a noise
level of 0.05, except for two rules: moderate debonding/
delamination at the root and severe debonding/delamination at the
root. However, for a higher noise level of 0.1, the system success rate
starts falling rapidly for the rules that define matrix cracking toward
the blade-tip zone and for the rules that define moderate and severe
debonding/delamination at the root.

During the analysis of misclassification of the rules [40], the
reason for the sudden fall in success rates at higher noise levels is that
the GFS is unable to isolate the damage levels due to higher noise in
the data. However, it is observed that even at the higher noise levels,
the GFS can isolate damage locations accurately.

Implementation of SHM System

TheSHMsystem can be implemented on the helicopter rotor blade
for prediction of physical damage and residual life of the blade. The
schematic diagram of implementation of the SHM system is shown
in Fig. 14. As shown in Fig. 14, for global GFS, tip deflection, and
root forces, and for local GFS, the strains measured at five locations
can be compared with the database of measurements from the
undamaged blade at a given trim condition. Further, using the data-
reduction algorithm, the measurement deltas can be calculated and
input to the GFS for prediction of the physical damage and residual
life of the blade. As shown in Table 1 for global SHM and in Table 2
for local SHM, the maintenance norms can be developed for giving
direct instructions to maintenance engineers. This will be more
helpful for optimal and safe use of composite rotor blades than the
“safe-life”method. Because thismethod gives intermediate residual-
life zones, it will help in reducing the overhauling time.

Conclusions

A numerical method is developed to link the physics-based
damage models with phenomenological models to predict the life
consumption of the composite rotor blade. Further, an automated
online SHM approach is created for prediction of physical damage
and life consumption of the composite rotor blade using the
simulated measurement deltas obtained by an aeroelastic analysis of
the composite rotor blade based on genetic fuzzy systems. The GFS
for prediction of global physical damage and life consumption is
developed using blade response and load-based measurements. The
GFS for prediction of local physical damage and life consumption is
developed using the strain-basedmeasurement deltas. The following
conclusions are drawn from the study.

1) The total life of the composite rotor blade can be divided into
three stages based on the physics-based damage modes such as
matrix cracking, debonding/delamination, and fiber breakage. The
first stage is dominated by matrix cracking and shows rapid stiffness
reduction that consumes 12–15% of the total blade life. The second
stage is dominated by debonding/delamination that shows stiffness
reduction in an almost linear fashion with respect to life
consumption. In this stage, life consumption is about 45–55% of
the total life. The third stage is dominated byfiber breakage that leads
to the final failure of the composite rotor blade.

2) The success rate of the global GFS depends upon the number of
measurements, type of measurements, and noise level in the
measurement data.

3) The global GFS developed at a training noise level of 0.15 using
displacement-based measurement deltas gives good success rates up

PAWAR AND GANGULI 993



to a noise level of 0.05. The use of load-based measurement deltas in
the GFS leads to good performance up to a noise level of 0.1. When
both loads and response are used as measurements, the GFS shows
good performance up to a noise level of 0.2.

4) The local GFS gives good results up to a noise level of 0.05. For
higher noise levels, success rates of the local GFS starts falling
drastically, because this system is unable to isolate the damage levels.
However, it is observed that the system can isolate damage locations
in the matrix-cracking damage zone accurately, even at higher noise
levels.
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